
2019. 5. 19. The Impossibly Fast C++ Delegates, Fixed - CodeProject

https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed) 1/6

Search for articles, questions, tipsQ&A forums stuff lounge ?articles

Sergey Alexandrovich Kryukov, 11 Mar 2017

The Impossibly Fast C++ Delegates, Fixed

Derived work based on the article by Sergey Ryazanov "The Impossibly Fast C++ Delegates": this good solution is fixed and further developed using C++11.

Download source code — 12.6 KB

What is Added?
Usage By Examples

Multicast Delegate Usage
Multicast Invocation with Return Object Handlers

Why it’s Fast?
Variadic Templates and Parsing of Template Parameters
Lambda Expressions
Multicast Delegate
Are the Delegates Comparable?
Compatibility and Build

This is a derived work based on the ideas published by Sergey Ryazanov in his article “The Impossibly Fast C++ Delegates”, 18 Jul 2005.

I found the idea interesting, especially after reading the criticism in the discussion section. Even though the code and some approached do have certain problems, if not defeat the
purpose of the delegates, at least partially, the idea of making the delegate very fast seems very fruitful, as well as the main technique. I hope I re-worked it into something really usable.

What is Added?
The code is written from scratch, based exclusively on the text of the original article where the idea is clearly expressed: the use of function stubs and filling the stub pointer from the
template parameters of the factory methods. It is obvious that the types of the call parameters and the return type should be further abstracted out as template parameters. Naturally, it
requires arbitrary number of parameters.

So, as a first step, I added the generalization for the class templates based on C++/11 variadic templates, combined with partial template specialization, to create what Sergey called
“preferred syntax”, <RET(PARAMS…)>, completely eliminating all the preprocessor code.

Notably, in general case, there are two levels of template and template instantiation: first, the delegate profile is instantiated by specifying the return and parameter types. On top of that,
a desired factory function is instantiated by specifying the class type and its static or instance function. This way, the instantiation of a delegate profile and the target of invocation are
carried apart in a near-optimal way.

As to the factory functions, first thing to do was to note that the can be given the same name (so called “overloading”), in my choice, “create”.

I also added the practically important support of lambda expressions in the style similar to std::function. The delegate of the same time could be assigned to an instance of a
lambda expression and called later. Importantly, the closure capture performed by a lambda expression is preserved in the delegate instance.

All of the above is covered by a single delegate template class. I also added one more template, multicast delegate, in .NET style.

I also added semantic comparison between delegate instances of both types and comparison with null pointer, assignment operators giving the compiler the possibility to implicitly
instantiate correspondent method templates through type inference, and similar small features.

Notably, the instances of both delegate types can be created as “empty”. It reflects the main paradigm of the delegate usage, when the delegate instance is hosted by some class; and the
code using the class sets or adds its own handlers in the course of this usage.

Performance comparison was done with the use of std::function. In all cases where the time measurements might be considered as relatively valid (very roughly, starting from a
hundred of delegate instances each called a hundred of times), the delegate type has shown superior performance compared with std::function. Roughly, depending on many
factors, the gain in delegate/std::function creation time was from 10 to 60 times, and performance gain in the call operations was from 1.1 to 3 times. I performed the
measurements on Windows in two platforms, x86 (IA-32) and x86-64, with Clang, GCC and Microsoft compilers — see also Compatibility and Build.

Usage By Examples

class Sample {
public:
 double InstanceFunction(int, char, const char*) { return 0.1; }
 double ConstInstanceFunction(int, char, const char*) const { return 0.2; }
 static double StaticFunction(int, char, const char*) { return 0.3; }
}; //class Sample

//...

Sample sample;

 4.73 (40 votes) Rate this:

Hide Shrink Copy Code

14,085,361 members Sign in

https://www.codeproject.com/
https://www.codeproject.com/script/Answers/List.aspx?tab=active
https://www.codeproject.com/script/Forums/List.aspx
https://www.codeproject.com/Feature/
https://www.codeproject.com/Lounge.aspx
https://www.codeproject.com/KB/FAQs/
https://www.codeproject.com/script/Articles/Latest.aspx
https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed?display=Print
https://www.codeproject.com/script/Membership/View.aspx?mid=2291164
https://www.codeproject.com/KB/cpp/1170503/CppDelegates.zip
https://www.codeproject.com/Members/Sergey-Ryazanov
https://www.codeproject.com/articles/11015/the-impossibly-fast-c-delegates
https://en.wikipedia.org/wiki/Variadic_template#C.2B.2B
https://en.wikipedia.org/wiki/Partial_template_specialization#Partial_specialization
https://www.codeproject.com/Articles/891455/Some-Programming-Approaches-to-Neuro-Linguistic-Pr#a3
https://en.wikipedia.org/wiki/Anonymous_function#C.2B.2B_.28since_C.2B.2B11.29
https://en.wikipedia.org/wiki/Closure_%28computer_programming%29
http://clang.llvm.org/
https://gcc.gnu.org/
https://msdn.microsoft.com/en-us/library/60k1461a.aspx
https://www.codeproject.com/script/Membership/LogOn.aspx?rp=%2fArticles%2f1170503%2fThe-Impossibly-Fast-Cplusplus-Delegates-Fixed)

2019. 5. 19. The Impossibly Fast C++ Delegates, Fixed - CodeProject

https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed) 2/6

delegate<double(int, char, const char*)> d;

auto dInstance = decltype(d)::create<Sample, &Sample::InstanceFunction>(&sample);
auto dConst = decltype(d)::create<Sample, &Sample::ConstInstanceFunction>(&sample);
auto dFunc = decltype(d)::create<&Sample::StaticFunction>();
// same thing with non-class functions

dInstance(0, 'A', "Instance method call");
dConst(1, 'B', "Constant instance method call");
dFunc(2, 'C', "Static function call");

int touchPoint = 1;
auto lambda = [&touchPoint](int i, char c, const char* msg) -> double {
 std::cout << msg << std::endl;
 // touch point is captured by ref, can change:
 return (++touchPoint + (int)c) * 0.1 - i;
}; //lambda

decltype(d) dLambda = lambda; // lambda to delegate
// or:
//decltype(d) dLambda(lambda);

if (d == nullptr) // true
 d(1, '1', "lambda call"); //won't

d = dLambda; // delegate to delegate

if (d == dLambda) // true, and also d != nullptr
 d(1, '1', "lambda call"); //will be called

By the way, compare this usage in the cases of class/struct instance function with the same thing using std::function:

//...

Sample sample;
using namespace std::placeholders;
std::function<double(double(int, char, const char*))> f
 = std::bind(&Sample::InstanceFunction, &sample, _1);

The confusing part is the use of std::placeholders and _1 (which is used to express the notion of the instance pointer passed as the first implicit parameter to the instance
function call), which hardly looks obvious.

Multicast Delegate Usage

multicast_delegate<double(int, char, const char*)> md;
multicast_delegate<double(int, char, const char*)> mdSecond;
if (md == nullptr) // true
 md(5, '6', "zero calls"); //won't
// add some of the delegate instances:
md += mdSecond; // nothing happens to md
md += d; // invocation list: size=1
md += dLambda; // invocation list: size=2
if (md == dLambda) //false
 std::cout << "md == dLambda" << std::endl;
if (dLambda == md) //false
 std::cout << "dLambda == md" << std::endl;
if (md == mdSecond) //false
 std::cout << "md == mdSecond" << std::endl;
//adding lambda directly:
md += lambda; // invocation list: size=3
 md(7, '8', "call them all");

The above examples of multicast delegate usage discard the objects returned from each operation. All the code samples shown above can work with void return type. What to do with
the return objects? They can be somehow accumulated; some of the values can be discarded, and so on. So, what solution would be the universal? It can be done by supplying a handler
called on each return.

Multicast Invocation with Return Object Handlers

In addition to the operator(), the invocation with handling can be performed with a separate invocation template operator() with additional parameter — a handler for the
returned objects:

double total = 0;
md(9, 'a', "handling the return values:",
 [&total](size_t index, double* ret) -> void {
 std::cout << "\t"
 << "index: "
 << index
 << "; returned: " << *ret
 << std::endl;
 total += *ret;
});

Note that the handler shown here is the instance of the delegate template class created from a lambda expression. There is another form of the handler based on
std::function. Interestingly, no function template instantiation is required, as the type of the handler can be deduced (inferred) by a compiler from the context.

This code sample demonstrates the effect of enclosure capture used to accumulate the returned values in total. Of course, any other logic can be used; see also “DelegateDemo.h”.

Hide Copy Code

Hide Copy Code

Hide Copy Code

2019. 5. 19. The Impossibly Fast C++ Delegates, Fixed - CodeProject

https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed) 3/6

Why it’s Fast?
The basic idea is explained in the article by S. Ryazanov.

The mechanism is fast because good part of work is delegated to the compile-time phase of the product life time.

The delegate invocation call, operator (), has only one level of indirection, a call to one of three stub functions (I added one more to support lambda). The address of an original
method is not stored in the delegate class instance; instead, it is created during compile time, template instantiation. This way, each fragment of code creating an instance of a delegate
based on a distinct function, instantiates a separate version of the stub. In each stub, the address of the function to be called is presented to the compiler as an immediate constant. Only
one pointer is passed during run time: the pointer to the object used as “this” call argument (with the overhead of passing nullptr for static functions), which I later started to reuse
as a pointer to a lambda expression instance, to support lambda.

Important performance factor here is the absence of any runtime check which could be used to distinguish all four cases: instance function of a class, constant instance function of a class,
static function and lambda expression. According to my brief and not very accurate research, such check would almost double the execution time related to the invocation mechanism
overhead.

Variadic Templates and Parsing of Template Parameters
This is the technique used to provide the structured function-like syntax for template parameters:

template <typename T> class delegate;

template<typename RET, typename ...PARAMS>
class delegate<RET(PARAMS...)> final : private delegate_base<RET(PARAMS...)> {
 //...
};

The specialization delegate<RET(PARAMS…)> creates the convenient profile for template instantiation, similar to the template std::function:

delegate<double(int, const string*)> del;
delegate<void(double&)> byRefVoidDel;
// ...and the like

Lambda Expressions
The idea behind the lambda is to reuse the “this” pointer in the delegate instance data. In other cases, this pointer is used to hold the instance pointer of the class which instance
method is used in the delegate, to pass it as the first (normally implicit) parameter of the method call.

To perform the lambda expression call, I added one more stub function, lambda_stub (see “Delegate.h”):

template <typename LAMBDA>
static RET lambda_stub(void* this_ptr, PARAMS... arg) {
 LAMBDA* p = static_cast<LAMBDA*>(this_ptr);
 return (p->operator())(arg...);
}

The reason for such solution is this is related to what I already explained above — too expensive overhead of possible check of the different cases.

In passing the lambda instance to the delegate instance, the most important problem is the support of the major lambda, closure capture. Notably, this feature is lost when a lambda
instance is copied by value (if the capture set is not empty, the copy throws exception at its call). To me, such lambda design is questionable, but this is a standard behavior. Passing the
instance by pointer created by the caller works, but this hardly could be a viable design, due to the need of dealing with null pointers. So, the only reasonable solution is to pass the
lambda instance by constant reference and creation of the pointer inside the factory function.

This is how the factory function looks:

template <typename LAMBDA>
static delegate create(const LAMBDA & instance) {
 return delegate((void*)(&instance), lambda_stub<LAMBDA>);
}

This is the formal way to instantiate the template for this function:

auto d = delegate<double(int, char, const char*)>
 ::create<decltype(lambda)>(lambda);

(See the declaration of d and lambda above.)

However, there is no a need to do it, because the lambda type will be deduced (inferred) by a compiler from the delegate type. So, it will work if <decltype(lambda)> is omitted
from the code fragment shown above. Moreover, it could be done through the assignment operator defined for the delegate class:

delegate<double(int, char, const char*)> dl = lambda;

This is possible because of the template copy constructor and template assignment operator. Again, the template instantiation is not needed (and not
possible for a constructor), because the template parameters are deduced (inferred) from delegate and lambda types.

Multicast Delegate

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

https://www.codeproject.com/articles/11015/the-impossibly-fast-c-delegates

2019. 5. 19. The Impossibly Fast C++ Delegates, Fixed - CodeProject

https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed) 4/6

First of all, as multicast delegate represent the set of handlers in the form of invocation list, and the heap is used (this is the only piece of code where heap is used), much higher intrinsic
performance cost of the list operation support and the list iteration totally absorbs fine performance detail of the list item call. And yet, the invocation list item holds the same pair of
this/stub pointers as in delegate, not the pointer to a delegate instance.

A multicast_delegate instance is created with an empty invocation list, which can be then populated with items using a set of “+=” operators from other instances of
multicast_delegate, delegate and from lambda expressions of matching profiles. When existing list items used, they are cloned.

Are the Delegates Comparable?
Yes, they are, despite the statements made in Sergey’s article. “Comparison” is not a fully accurate term in this case; all the talking is actually about the equality or identity relation. As soon
as this is meant by “comparison”, delegates are “comparable” — please see the set of “==” and “!=” operators. Several operators represent all cases of equality checks: each of the
classes delegate and multicast_delegate can be equal or not equal to the instance of its own or another type, additionally, an instance of each type can be equal or not equal
to nullptr. Taking into account commutativity, it gives 12 cases. For all of the purposes of such relation, this is a perfectly valid set of operators.

Sergey argued that “a delegate doesn’t contain a pointer to method”. But why? It actually does contain such pointer, only this pointer is not passed to a delegate instance during run time.
Instead, all the template instantiations generate the all the method addresses in the form of immediate constants, so the comparison of such pointers is done correctly but indirectly,
through the comparison of different stubs. If two stub pointers are different, it always means that underlying function pointers are different, and visa versa.

Two delegate instances created from the same function or the same class and same “this” pointer compare as identical. The same goes with the delegate instances created from some
lambda expression instance. If, by some reason, someone manages to compile some fragment of source code independently in different compilation units and make those units link
together successfully, it yields different classes and function pointers, not the same. Likewise, two separate lambda expressions in the same stack frame with identical code still produce
two different types, which can be easily checked up; and this is done for a reason. In both cases, the delegate instances instantiated from these not-really-identical objects simply must
compare as not identical.

After all, the set of “==” and “!=” operators defines the relationship on the set of delegate instances which matches the definition of equivalence relation: it is reflective, symmetric
(commutative) and transitive — all that matters.

Compatibility and Build
All the delegate/multicast_delegate solution is contained in just three files:

“DelegateBase.h”,
“Delegate.h”,
“MultiCastDelegate.h”;

they include each other in the given order and can be added to any project.

The compiler should support C++11 or later standard. For GCC, this is an option which should be set to -std=c++11 or, say, -std=c++14.

The demo and benchmark project is provided in two forms: 1) Visual Studio 2015 solution and project using Microsoft C++ compiler and Clang — see “CppDelegates.sln” and 2)
Code::Blocks project using GCC — “ CPPDelegates.cbp”. For all other options, one can assemble a project or a make file by adding all “*.h” and “*.cpp” files in the code directory
“CppDelegates”.

I tested the code with Visual Studio 2015, Clang 4.0.0, GCC 5.1.0.

The C++ options included “disable language extensions” (/Za for Microsoft and Clang), which seems to be essential for Microsoft. However, with this option, one weird Microsoft
problem is the failure to compile “//” comments at the end of a file; the problem can be solved, for example, by adding an empty line at the end of the file; I set up a “Microsoft guard”
in the form of “/* … */” at the end of each file.

License
This article, along with any associated source code and files, is licensed under The MIT License

Share

About the Author

You may also be interested in...

The Impossibly Fast C++ Delegates Modernize Your C# Code - Part III: Values

Sergey Alexandrovich Kryukov
Architect
United States

No Biography provided

invocation : 기도, 기원, 간구, 탄원, 청원

https://www.codeproject.com/articles/11015/the-impossibly-fast-c-delegates
https://en.wikipedia.org/wiki/Equality_%28mathematics%29
https://www.codeproject.com/Members/Sergey-Ryazanov
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/C%2B%2B11
http://clang.llvm.org/
http://www.codeblocks.org/
https://gcc.gnu.org/
http://clang.llvm.org/
https://gcc.gnu.org/
http://www.opensource.org/licenses/mit-license.php
https://www.codeproject.com/Articles/11015/The-Impossibly-Fast-C-Delegates
https://www.codeproject.com/Articles/4114267/Modernize-Your-Csharp-Code-Part-III-Values
https://www.codeproject.com/Members/SAKryukov

2019. 5. 19. The Impossibly Fast C++ Delegates, Fixed - CodeProject

https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed) 5/6

Search Comments

Fast C++ Delegate Delegates: C++11 vs. Impossibly Fast - A Quick and Dirty Comparison

O(n)CacheXX_RU Series Caching Algorithms Fast C++ Delegate: Boost.Function 'drop-in' replacement and multicast

Comments and Discussions

You must Sign In to use this message board.

First Prev Next

Compile time instance address
John Wellbelove 12-May-19 21:24

Re: Compile time instance address
John Wellbelove 13-May-19 0:18

Virtual method problem
Member 13744291 29-Aug-18 2:03

/Za
jogomu 26-Sep-17 7:48

Re: /Za
Sergey Alexandrovich Kryukov 26-Sep-17 10:29

delegate referring to lambda as return value
jogomu 5-Sep-17 12:19

Re: delegate referring to lambda as return value
Sergey Alexandrovich Kryukov 5-Sep-17 13:11

Re: delegate referring to lambda as return value
jogomu 5-Sep-17 13:29

That's right
Sergey Alexandrovich Kryukov 5-Sep-17 16:16

Re: That's right
jogomu 11-Sep-17 15:31

delegate nullptr testing
Member 13120502 11-Apr-17 23:28

Re: delegate nullptr testing
Sergey Alexandrovich Kryukov 12-Apr-17 3:40

Re: delegate nullptr testing
Member 13120502 13-Apr-17 0:30

Re: delegate nullptr testing
Sergey Alexandrovich Kryukov 13-Apr-17 5:26

Re: delegate nullptr testing
earlnsk 28-Jul-18 1:45

Re: delegate nullptr testing
Sergey Alexandrovich Kryukov 29-Jul-18 19:27

Nice.
Pete O'Hanlon 20-Mar-17 22:35

Re: Nice.
Sergey Alexandrovich Kryukov 21-Mar-17 2:46

Perfect forwarding
Raúl Bocanegra Algarra 20-Mar-17 12:58

https://www.codeproject.com/Articles/13287/Fast-C-Delegate
https://www.codeproject.com/Articles/616090/Delegates-Cplusplus11-vs-Impossibly-Fast-A-Quick-a
https://www.codeproject.com/Articles/4051466/O-n-CacheXX-RU-Series-Caching-Algorithms
https://www.codeproject.com/Articles/18389/Fast-C-Delegate-Boost-Function-drop-in-replacement
https://www.codeproject.com/script/Membership/LogOn.aspx?rp=%2fArticles%2f1170503%2fThe-Impossibly-Fast-Cplusplus-Delegates-Fixed)%3ffid%3d1917788%26df%3d90%26mpp%3d25%26prof%3dTrue%26sort%3dPosition%26view%3dNormal%26spc%3dRelaxed
https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed)?fid=1917788&df=90&mpp=25&prof=True&sort=Position&view=Normal&spc=Relaxed&fr=26#xx0xx
https://www.codeproject.com/Messages/5627304/Compile-time-instance-address.aspx
https://www.codeproject.com/Messages/5627354/Re-Compile-time-instance-address.aspx
https://www.codeproject.com/Messages/5549940/Virtual-method-problem.aspx
https://www.codeproject.com/Messages/5438657/Za.aspx
https://www.codeproject.com/Messages/5438700/Re-Za.aspx
https://www.codeproject.com/Messages/5432094/delegate-referring-to-lambda-as-return-value.aspx
https://www.codeproject.com/Messages/5432103/Re-delegate-referring-to-lambda-as-return-value.aspx
https://www.codeproject.com/Messages/5432107/Re-delegate-referring-to-lambda-as-return-value.aspx
https://www.codeproject.com/Messages/5432136/Thats-right.aspx
https://www.codeproject.com/Messages/5433879/Re-Thats-right.aspx
https://www.codeproject.com/Messages/5384145/delegate-nullptr-testing.aspx
https://www.codeproject.com/Messages/5384257/Re-delegate-nullptr-testing.aspx
https://www.codeproject.com/Messages/5384722/Re-delegate-nullptr-testing.aspx
https://www.codeproject.com/Messages/5384863/Re-delegate-nullptr-testing.aspx
https://www.codeproject.com/Messages/5541297/Re-delegate-nullptr-testing.aspx
https://www.codeproject.com/Messages/5541475/Re-delegate-nullptr-testing.aspx
https://www.codeproject.com/Messages/5375297/Nice.aspx
https://www.codeproject.com/Messages/5375421/Re-Nice.aspx
https://www.codeproject.com/Messages/5375219/Perfect-forwarding.aspx

2019. 5. 19. The Impossibly Fast C++ Delegates, Fixed - CodeProject

https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed) 6/6

Permalink | Advertise | Privacy | Cookies | Terms of Use | Mobile
Web01 | 2.8.190518.1 | Last Updated 11 Mar 2017 언어 선택 ▼

Article Copyright 2017 by Sergey Alexandrovich Kryukov
Everything else Copyright © CodeProject, 1999-2019

Layout: fixed | fluid

Refresh 1 2 Next »

 General News Suggestion Question Bug Answer Joke Praise Rant Admin

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

Re: Perfect forwarding
Sergey Alexandrovich Kryukov 20-Mar-17 13:30

Re: Perfect forwarding
Raúl Bocanegra Algarra 24-Mar-17 15:47

Parameter pack
Sergey Alexandrovich Kryukov 24-Mar-17 21:35

Re: Parameter pack
Raúl Bocanegra Algarra 25-Mar-17 2:03

My vote of 5
Maciej Los 20-Mar-17 2:16

Re: My vote of 5
Sergey Alexandrovich Kryukov 20-Mar-17 6:11

https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed
http://developermedia.com/
https://www.codeproject.com/info/privacy.aspx
https://www.codeproject.com/info/cookie.aspx
https://www.codeproject.com/info/TermsOfUse.aspx
javascript:void(0)
mailto:webmaster@codeproject.com
https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed)?PageFlow=FixedWidth
https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed)?PageFlow=Fluid
https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed)?fid=1917788&df=90&mpp=25&sort=Position&spc=Relaxed&prof=True&view=Normal
https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed)?fid=1917788&df=90&mpp=25&sort=Position&spc=Relaxed&prof=True&view=Normal&fr=26#xx0xx
https://www.codeproject.com/Articles/1170503/The-Impossibly-Fast-Cplusplus-Delegates-Fixed)?fid=1917788&df=90&mpp=25&sort=Position&spc=Relaxed&prof=True&view=Normal&fr=26#xx0xx
https://www.codeproject.com/Messages/5375224/Re-Perfect-forwarding.aspx
https://www.codeproject.com/Messages/5377206/Re-Perfect-forwarding.aspx
https://www.codeproject.com/Messages/5377231/Parameter-pack.aspx
https://www.codeproject.com/Messages/5377286/Re-Parameter-pack.aspx
https://www.codeproject.com/Messages/5374995/My-vote-of-5.aspx
https://www.codeproject.com/Messages/5375085/Re-My-vote-of-5.aspx

